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Abstract
We investigate the vacuum expectation values of the energy–momentum tensor
and the fermionic condensate associated with a massive spinor field obeying
the MIT bag boundary condition on a spherical shell in the global monopole
spacetime. In order to do that, we use the generalized Abel–Plana summation
formula. As we shall see, this procedure allows us to extract from the vacuum
expectation values the contribution coming from the unbounded spacetime
and to explicitly present the boundary induced parts. As regards the boundary
induced contribution, two distinct situations are examined: the vacuum average
effects inside and outside the spherical shell. The asymptotic behaviour of the
vacuum densities is investigated near the sphere centre and near the surface,
and at large distances from the sphere. In the limit of strong gravitational
field corresponding to small values of the parameter describing the solid angle
deficit in the global monopole geometry, the sphere induced expectation values
are exponentially suppressed. We discuss, as a special case, the fermionic
vacuum densities for the spherical shell on the background of the Minkowski
spacetime. Previous approaches to this problem within the framework of the
QCD bag models have been global and our calculation is a local extension of
these contributions.

PACS numbers: 03.70.+k, 04.62.+v, 12.39.Ba

1. Introduction

Topological defects of different types [1] may have been formed during the phase transitions in
the early universe. Depending on the topology of the vacuum manifold M, these are domain
walls, strings, monopoles and textures corresponding to the homotopy groups π0(M), π1(M),

0305-4470/04/103543+17$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3543

http://stacks.iop.org/ja/37/3543


3544 A A Saharian and E R Bezerra de Mello

π2(M) and π3(M), respectively. Physically, these topological defects appear as a consequence
of the spontaneous breakdown of local or global gauge symmetries of the system composed of
self-coupling scalar Higgs or Goldstone fields, respectively. Global monopoles are spherically
symmetric topological defects created due to the phase transition when a global symmetry is
spontaneously broken and they play an important role in cosmology and astrophysics.

The simplest theoretical model which provides global monopoles was proposed a few
years ago by Barriola and Vilenkin [2]. This model is composed of a self-coupling iso-scalar
Goldstone field triplet φa , whose original global O(3) symmetry is spontaneously broken to
U(1). The matter field plays the role of an order parameter which, outside the monopole’s
core, acquires a non-vanishing value. The main part of the monopole’s energy is concentrated
in its small core. Coupling this system with the Einstein equations, a spherically symmetric
metric tensor is found. Neglecting the small size of the monopole’s core, this tensor can be
approximately given by the line element

ds2 = dt2 − dr2 − α2r2(dθ2 + sin2 θ dφ2) (1)

where the parameter α2, smaller than unity, depends on the symmetry breaking energy scale
and codifies the presence of the global monopole4. This spacetime corresponds to an idealized
point-like global monopole. It is not flat: the scalar curvature R = 2(1 − α2)/r2, and the
solid angle of a sphere of unit radius is � = 4πα2, so smaller than the ordinary one. The
energy–momentum tensor associated with this object has a diagonal form and its non-vanishing
components read T 0

0 = T r
r = (α2 − 1)/r2.

The quantum effects due to the point-like global monopole spacetime on the matter fields
have been considered in [3, 4] for massless scalar and fermionic fields, respectively. In order
to do that, the scalar and spinor Green functions in this background were obtained. More
recently, the effect of the temperature on these polarization effects was analysed in [5] for
scalar and fermionic fields. The calculation of quantum effects on a massless scalar field in a
higher dimensional global monopole spacetime has also been developed in [6].

Although the deficit solid angle and also the curvature associated with this manifold
produce non-vanishing vacuum polarization effects on matter fields, the influence of boundary
conditions obeyed by the matter fields on the vacuum polarization effects have been
investigated. The Casimir energy associated with a massive scalar field inside a spherical
region in the global monopole background have been analysed in [7, 8] using the zeta
function regularization method. More recently, the Casimir densities induced by a single
and two concentric spherical shells have been calculated [9, 10] for higher dimensional
global monopole spacetime by making use of the generalized Abel–Plana summation formula
[11, 12]. This procedure allows one to develop the summation over all discrete modes. Here
we shall calculate the Casimir densities for fermionic fields obeying the MIT bag boundary
condition on the spherical shell in the point-like global monopole spacetime. Specifically we
shall calculate the renormalized vacuum expectation values of the energy–momentum tensor
and the fermionic condensate in the regions inside and outside the spherical shell. As we shall
see using the generalized Abel–Plana summation formula, all the components of the vacuum
average of the energy–momentum tensor can be separated into two contributions: boundary
dependent and independent ones. The boundary independent contribution is similar to the
previous result obtained in [4] using a different approach. It is divergent and consequently,
in order to obtain a finite and well defined expression, we must apply some regularization
procedure. The boundary dependent contribution is finite at any strictly interior or exterior
point and does not contain anomalies. Consequently, it does not require any regularization

4 In fact the parameter α2 = 1 − 8πGη2, with η being the energy scale where the global symmetry is spontaneously
broken.
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procedure. Because the analysis of the boundary independent term has been performed before,
in this present analysis we shall concentrate on the boundary dependent part. Taking α = 1,
from our results in this paper we obtain, as a special case, the fermionic Casimir densities
for a spherical shell on the background of the Minkowski spacetime. With the motivation of
the MIT bag model in QCD, the corresponding Casimir effect was considered in a number of
papers [13–21] (for reviews and additional references see [22–25]). To our knowledge, most
of the previous studies were focused on global quantities, such as the total vacuum energy
and stress on the surface. The density of the fermionic vacuum condensate for a massless
spinor field inside the bag was investigated in references [15, 16] (see also [24]). In the
considerations of the Casimir effect it is of physical interest to calculate not only the total
energy but also the local characteristics of the vacuum, such as the energy–momentum tensor
and vacuum condensates. In addition to describing the physical structure of the quantum field
at a given point, the energy–momentum tensor acts as the source of gravity in the Einstein
equations5. It therefore plays an important role in modelling a self-consistent dynamics
involving the gravitational field [26]. For the case of the Minkowski bulk, our calculation is
a local extension of the previous contributions on the fermionic Casimir effect for a spherical
shell.

This paper is organized as follows. In section 2 we obtain the normalized eigenfunctions
for a massive spinor field on the global monopole spacetime inside a spherical shell of finite
radius. In section 3, using the generalized Abel–Plana summation formula, we formally
obtain the vacuum expectation value of the energy–momentum tensor for the fermionic field
obeying the MIT bag condition on the spherical shell. Explicit behaviour for the boundary
dependent term is exhibited. Section 4 is devoted to the calculation of the vacuum expectation
values for the region outside the shell. In section 5 we present our concluding remarks and
leave to the appendix some relevant calculations.

2. The eigenfunctions for a spinor field on the global monopole spacetime

The dynamics of a massive spinor field on a curved spacetime is described by the Dirac
equation

iγ µ(∂µ + 	µ)ψ − Mψ = 0 (2)

where γ µ are the Dirac matrices defined in such a curved spacetime, and 	µ is the spin
connection defined as

	µ = 1
4γν∇µγ ν (3)

∇µ being the standard covariant derivative operator. Notice that, using the usual
anticommutation relations for the Dirac matrices, {γ µ, γ ν} = 2gµν , we can see that

γ µ	µ = 1
4∇µγ µ + 1

8γ µγ ν(∂µγν − ∂νγµ). (4)

After this brief introduction, let us now specialize to the spacetime associated with the
point-like global monopole whose line element is described by (1). In order to develop such
a procedure we shall adopt the following representation for the Dirac matrices:

γ 0 =
(

1 0
0 −1

)
γ k =

(
0 σ k

−σ k 0

)
(5)

5 The effects of the back-reaction corrections on the Einstein equation due to the vacuum polarization produced by
a massless scalar field in a global monopole spacetime has been analysed in [3].
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given in terms of the curved space Pauli 2 × 2 matrices σ k . In the spherical coordinates
corresponding to line element (1) the latter have the form

σ 1 =
(

cos θ e−iφ sin θ

eiφ sin θ −cos θ

)
σ 2 = 1

αr

( −sin θ e−iφ cos θ

eiφ cos θ sin θ

)

σ 3 = i

αr sin θ

(
0 −e−iφ

eiφ 0

)
. (6)

These matrices satisfy the relation

σ lσ k = γ lk + i
εlkm

√
γ

γmpσp (7)

where γ lk = −glk are the spatial components of the metric tensor and γ is the corresponding
determinant. εlkm is the totally anti-symmetric symbol with ε123 = 1. Here and below, the italic
indices i, k, . . . run over values 1, 2, 3. It can be easily checked that with these representations
the Dirac matrices satisfy the standard anticommutation relations. Substituting these matrices
into formula (4), we can see that

γ µ	µ = α − 1

αr
γ 1. (8)

Let us write the four-component spinor field ψ in terms of two-component ones as

ψ =
(

ϕ

χ

)
. (9)

Assuming the time dependence in the form e−iωt , from (2) one finds the equations for these
spinors

σ k∂kϕ +
α − 1

αr
(n̂ · �σ)ϕ = i(ω + M)χ (10a)

σ k∂kχ +
α − 1

αr
(n̂ · �σ)χ = i(ω − M)ϕ (10b)

where �σ = (σ 1, σ 2, σ 2) and n̂ = �r/r . The angular parts of the spinors are the standard spinor
spherical harmonics �jlm whose explicit form is given in [27]:

ϕ = f (r)�jlm χ = (−1)(1+l−l′)/2g(r)�jl′m (11)

where j specifies the value of the total angular momentum, and m its projection; l =
j ± 1/2, l′ = 2j − l. Using the formula

�jl′m = il−l′(n̂ · �σ)�jlm (12)

it can be seen that

σ k∂kϕ = il
′−l

[
f ′(r) +

1 + κ

αr
f (r)

]
�jl′m (13a)

σ k∂kχ = −i

[
g′(r) +

1 − κ

αr
g(r)

]
�jlm (13b)

where we use the notation

κ =
{−(l + 1) j = l + 1/2
l j = l − 1/2.

(14)
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By taking into account these relations, from (10) we obtain the following set of differential
equations for the radial functions:

f ′(r) +
α + κ

αr
f (r) − (ω + M)g(r) = 0 (15a)

g′(r) +
α − κ

αr
g(r) + (ω − M)f (r) = 0. (15b)

They lead to the second-order differential equations for the separate functions:

f ′′(r) +
2

r
f ′(r) +

[
k2 − κ(κ + α)

α2r2

]
f (r) = 0 k =

√
ω2 − M2 (16a)

g′′(r) +
2

r
g′(r) +

[
k2 − κ(κ − α)

α2r2

]
g(r) = 0 (16b)

with the solutions

f (r) = A
Z|κ/α+1/2|(kr)√

r
g(r) = B

Z|κ/α−1/2|(kr)√
r

(17)

where Zν(x) represents the cylindrical Bessel function of the order ν. The constants A and B
are related by equations (15)

B = ∓kA

ω + M
for j = l ± 1

2
. (18)

As a result, for a given j we have eigenfunctions of two types with different parities
corresponding to j = l ± 1/2. These functions are specified by the set of quantum numbers
β = (σkj lm) and have the form

ψβ = A e−iωt

√
r

(
Zνσ

(kr)�jlm

inσZνσ +nσ
(kr) k(n̂·�σ)

ω+M
�jlm

)
(19)

l = j − nσ

2
ω = ±E E =

√
k2 + M2 (20)

where j = 1/2, 3/2, . . . , and m = −j, . . . , j ,

σ = 0, 1 nσ = (−1)σ νσ = j + 1/2

α
− nσ

2
. (21)

On the basis of formula (19) we define the positive and negative frequency eigenfunctions as

ψβ =
{

ψ
(+)
β for ω > 0

ψ
(−)
β for ω < 0.

(22)

These functions are orthonormalized by the condition∫
d3x

√
γψ

(η)+
β ψ

(η′)
β ′ = δηη′δββ ′ η, η′ = ± (23)

from which the normalization constant A can be determined.
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3. Vacuum expectation values of the energy–momentum tensor inside a spherical shell

In this section we shall consider the vacuum expectation values of the energy–momentum
tensor inside a spherical shell concentric with the global monopole. The integration in formula
(23) goes over the interior region of the sphere and Zν(x) = Jν(x), where Jν(x) is the Bessel
function of the first kind. We shall assume that on the sphere surface the field satisfies bag
boundary conditions:

(1 + iγ µnbµ)ψ = 0 r = a (24)

where a is the sphere radius, nbµ is the outward-pointing normal to the boundary, for the
sphere nbµ = (0, 1, 0, 0). In terms of the spinors ϕ and χ this condition is written in the form

ϕ + i(�σ · n̂b)χ = 0 r = a. (25)

The imposition of this boundary condition on the eigenfunctions (19) leads to the following
equations for the eigenvalues

Jνσ +nσ
(ka) = nσ

ω + M

k
Jνσ

(ka). (26)

This boundary condition can be written in the form

J̃ νσ
(ka) = 0 (27)

where now and below for a given function F(z) we shall use the notation

F̃ (z) ≡ zF ′(z) +
(
µ + sω

√
z2 + µ2 − (−1)σ ν

)
F(z) σ = 0, 1 (28)

with sω = sgn(ω) and µ = Ma. Let us denote by λνσ ,s = ka, s = 1, 2, . . . , the roots to
equation (27) in the right half-plane, arranged in ascending order. By taking into account
equation (26) and using the standard integral for the Bessel functions, from condition (23) for
the normalization coefficient one finds

A = Aσ A−2
σ ≡ 2α2a2

z2
J 2

νσ
(z)

[(
aω − nσ

νσ

2

)2
− ν2

σ

4
− z2

2a(ω + M)

]
z = λνσ ,s

(29)

with ω = ±
√

λ
(σ)2
l,s

/
a2 + M2.

Now we expand the field operator in terms of the complete set of single-particle states{
ψ

(+)
β , ψ

(−)
β

}
ψ̂ =

∑
β

(
âβψ

(+)
β + b̂+

βψ
(−)
β

)
(30)

where âβ is the annihilation operator for particles and b̂+
β is the creation operator for

antiparticles. In order to find the vacuum expectation value for the operator of the energy–
momentum tensor we substitute the expansion (30) and the analogous expansion for the
operator ˆ̄ψ into the corresponding expression for the spinor fields:

Tµν{ ˆ̄ψ, ψ̂} = i

2
[ ˆ̄ψγ(µ∇ν)ψ̂ − (∇(µ

ˆ̄ψ)γν)ψ̂]. (31)

By making use of the standard anticommutation relations for the annihilation and creation
operators, for the vacuum expectation values one finds the following mode-sum formula:

〈0|Tµν |0〉 =
∑

β

Tµν

{
ψ̄

(−)
β (x), ψ

(−)
β (x)

}
(32)
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where |0〉 is the amplitude for the corresponding vacuum. Since the spacetime is spherically
symmetric and static, the vacuum energy–momentum tensor is diagonal; moreover,

〈
T θ

θ

〉 =〈
T

φ
φ

〉
. So in this case we can write

〈0|T ν
µ |0〉 = diag(ε,−p,−p⊥,−p⊥) (33)

in terms of the energy density ε and radial, p, and azimuthal, p⊥, pressures. As a consequence
of the continuity equation ∇ν〈0|T ν

µ |0〉 = 0, these functions are related by the equation

r
dp

dr
+ 2(p − p⊥) = 0 (34)

which means that the radial dependence of the radial pressure necessarily leads to the anisotropy
in the vacuum stresses.

Substituting eigenfunctions (19) into equation (32), the summation over the quantum
number m can be carried out by using the standard summation formula for the spherical
harmonics. For the energy–momentum tensor components one finds

q(r) = −1

8πα2a3r

∞∑
j=1/2

(2j + 1)
∑

σ=0,1

∞∑
s=1

Tνσ

(
λνσ ,s

)
f (q)

σνσ

[
λνσ ,s , Jνσ

(
λνσ ,sr

/
a
)]

q = ε, p, p⊥ (35)

where we have introduced the notation

f (ε)
σν [z, Jν(y)] = z

[(√
z2 + µ2 − µ

)
J 2

ν (y) +
(√

z2 + µ2 + µ
)
J 2

ν+nσ
(y)

]
(36)

f (p)
σν [z, Jν(y)] = z3√

z2 + µ2

[
J 2

ν (y) − 2ν + nσ

y
Jν(y)Jν+nσ

(y) + J 2
ν+nσ

(y)

]
(37)

f (p⊥)
σν [z, Jν(y)] = z3(2ν + nσ )

2y
√

z2 + µ2
Jν(y)Jν+nσ

(y). (38)

Note that in (35) we have used the relation between the normalization coefficient and the
function Tν(z) introduced in the appendix

A2
σ = z

2α2a2

√
z2 + a2M2 + aM√

z2 + a2M2
Tνσ

(z) z = λνσ ,s . (39)

The vacuum expectation values (35) are divergent and need some regularization procedure.
To make them finite we can introduce a cut-off function �η(z), z = λνσ ,s with the cut-off
parameter η, which decreases with increasing z and satisfies the condition �η → 1, η → 0.
Now, to extract the boundary-free parts we apply to the corresponding sums over s the
summation formula derived in the appendix. As a function f (z) in this formula we take
f (z) = f

(q)
σνσ

[z, Jνσ
(zr/a)]�η(z). As a result the components of the vacuum energy–

momentum tensor can be presented in the form

q(r) = qm(r) + qb(r) q = ε, p, p⊥ (40)

where the first term on the right-hand side comes from the integral on the left of summation
formula (A.7) and the second term comes from the integral on the right of this formula. Making
use of the asymptotic formulae for the Bessel modified functions, it can be seen that for r < a

the part qb(r) is finite in the limit η → 0 and, hence, in this part the cut-off can be removed.
As has been pointed out in the appendix, the function f

(q)
σνσ

[z, Jνσ
(zr/a)] satisfies relation
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(A.10) and, hence, the part of the integral on the right of formula (A.7) over the interval (0, µ)

vanishes after removing the cut-off. Introducing the notation

ν ≡ ν1 = l

α
+

1

2
(41)

explicitly summing over σ and transforming from summation over j to summation over
l = j + 1/2, one obtains

qm(r) = − 1

2πα2r

∞∑
l=1

l

∫ ∞

0

x3 dx√
x2 + M2

f (q)
ν [x, Jν(xr)] (42)

where we use the notation

f (ε)
ν [x, Jν(y)] =

(
1 +

M2

x2

) [
J 2

ν (y) + J 2
ν−1(y)

]
(43)

f (p)
ν [x, Jν(y)] = J 2

ν (y) + J 2
ν−1(y) − 2ν

y
Jν(y)Jν−1(y) (44)

f (p⊥)
ν [x, Jν(y)] = ν

y
Jν(y)Jν−1(y). (45)

Introducing in the expression for qb(r) the modified Bessel functions, after some
transformations and explicitly summing over σ , we obtain the formula

qb(r) = 1

π2α2a3r

∞∑
l=1

l

∫ ∞

µ

x3 dx√
x2 − µ2

W [Iν(x),Kν(x)]

W [Iν(x), Iν(x)]
F (q)

ν [x, Iνσ
(xr/a)] (46)

with

F (ε)
ν [x, Iν(y)] =

(
1 − µ2

x2

) {
I 2
ν−1(y) − I 2

ν (y) − µ
I 2
ν−1(y) + I 2

ν (y)

W [Iν(x),Kν(x)]

}
(47)

F (p)
ν [x, Iν(y)] = I 2

ν−1(y) − I 2
ν (y) − 2ν − 1

y
Iν(y)Iν−1(y) (48)

F (p⊥)
ν [x, Iν(y)] = ν − 1/2

y
Iν(y)Iν−1(y). (49)

Here and below for given functions f (x) and g(x) we use the notation

W [f (x), g(x)] = [xf ′(x) + (µ + ν)f (x)][xg′(x) + (µ + ν)g(x)] + (x2 − µ2)f (x)g(x).

(50)

As we see, the part qm(r) in the vacuum expectation value for the energy–momentum tensor
does not depend on the radius of the sphere a, whereas the contribution of the terms qb(r)

tends to zero as a → ∞ (for large a the subintegrand behaves as e2x(r/a−1)). It follows from
this that the quantities (42) are the vacuum expectation values for the components of the
energy–momentum tensor for the unbounded global monopole space:

〈0m|T ν
µ |0m〉 = diag(εm,−pm,−pm,−p⊥m) (51)

where |0m〉 is the amplitude for the corresponding vacuum. Note that in expressions (42) for
the corresponding components we have not explicitly written down the cut-off function. To be
precise, in this form all terms related to (42) are divergent. The renormalization prescriptions
adopted to provide a finite and well defined result are the usual ones applied for the curved
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spacetime without a boundary [26, 28, 29]. For the specific system analysed here the point-
splitting renormalization procedure has been applied in a previous publication [4]. The part
qb(r) in equation (40) is induced by the presence of the spherical shell and can be termed
the boundary part. As we have seen, the application of the generalized Abel–Plana formula
allows us to extract from the vacuum expectation value of the energy–momentum tensor
the contribution due to the boundary-free monopole spacetime and to present the boundary
induced part in terms of exponentially convergent integrals (for applications of the generalized
Abel–Plana formula to a number of Casimir problems with various boundary geometries, see
[11, 12, 30–34]). It can be easily checked that both the terms on the right of formula (40), qm(r)

and qb(r), obey the continuity equation (34). In addition, as is seen from expressions (46)–
(49), for a massless spinor field the boundary induced part of the vacuum energy–momentum
tensor is traceless and the trace anomalies are contained only in the purely global monopole
part without boundaries.

Having the components of the energy–momentum tensor, we can find the corresponding
fermionic condensate 〈0|ψ̄ψ |0〉 making use of the formula for the trace of the energy–
momentum tensor, T µ

µ = Mψ̄ψ . It is presented in the form of the sum

〈0|ψ̄ψ |0〉 = 〈0m|ψ̄ψ |0m〉 + 〈ψ̄ψ〉b (52)

where the boundary-free part (first summand on the right) and the sphere induced part
(second summand on the right) are determined by formulae similar to equations (42) and
(46), respectively, with the replacements

f (q)
ν [x, Jν(y)] → M

x2

[
J 2

ν (y) + J 2
ν−1(y)

]
(53)

F (q)
ν [x, Iν(y)] → − a

x2

{
µ

[
I 2
ν−1(y) − I 2

ν (y)
]

+ (x2 − µ2)
I 2
ν−1(y) + I 2

ν (y)

W [Iν(x),Kν(x)]

}
(54)

with the notation (50). Alternatively one could obtain formulae (52)–(54) by applying the
summation formula (A.7) to the corresponding mode-sum

∑
β ψ̄

(−)
β ψ

(−)
β for the fermionic

condensate.
Note that formulae (40), (42), (46) can be obtained in another equivalent way, applying

a certain first-order differential operator to the corresponding Green function and taking
the coincidence limit. To construct the Green function we can use the corresponding
mode expansion formula with eigenfunctions (19). This function is a 4 × 4 matrix and
the angular parts of the corresponding elements are products of the components for the
spinor spherical harmonics, �

(n)
jlm(θ, φ)�

(n′)+
j lm (θ ′, φ′), where the upper indices n, n′ = 1, 2

enumerate the spinor components. These parts are the same as in the boundary-free case and
coincide with the corresponding functions for the Minkowski bulk. The radial parts for the
components of the Green function contain the products of the Bessel functions in the forms
Jνσ +τnσ

(zr/a)Jνσ +τ ′nσ
(zr ′/a), τ, τ ′ = 0, 1, where z = λνσ ,s . To evaluate the sum over s we can

apply the summation formula (A.7). The condition (A.4) is satisfied if r + r ′ + |t − t ′| < 2a.
The term with the integral on the left in formula (A.7) gives the Green function for the
boundary-free global monopole spacetime, and the term with the integral on the right will give
the boundary induced part.

In the case α = 1 the quantities (42) present the vacuum expectation values for the
Minkowski spacetime without boundaries. This can be also seen by direct evaluation. For
example, in the case of the energy density, making use of the formula

∑∞
l=0(2l + 1)J 2

l+1/2(y) =
2y/π , one finds
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Figure 1. The vacuum energy density, a4ε (curve a), azimuthal pressure a4p⊥ (curve b) and radial
pressure a4p (curve c) for a massless spinor as functions of the ratio r/a inside and outside a
spherical shell in the Minkowski spacetime (α = 1).

εm(r) = − 1

2πr

∞∑
l=0

l

∫ ∞

0
dx x2

√
x2 + M2

[
J 2

l+1/2(xr) + J 2
l−1/2(xr)

]

= −2
∫

d3k

(2π)3

√
k2 + M2 (55)

which is precisely the energy density of the Minkowski vacuum for a spinor field. As for
the Minkowski background, the renormalized vacuum energy–momentum tensor vanishes,
qm(r)ren = 0, the vacuum energy–momentum tensor is purely boundary induced and the
corresponding components are given by formulae (46)–(49) with ν = l + 1/2. Note that the
previous investigations on the spinor Casimir effect for a spherical boundary (see, for instance,
[13, 14, 17–25] and references therein) consider mainly global quantities, such as the total
vacuum energy. For the case of a massless spinor the density of the fermionic condensate
〈ψ̄ψ〉b is investigated in [15, 16] (see also [24]). The corresponding formula derived in [15] is
obtained from (46) with the replacement (54) in the limit µ = 0. In figure 1 we have presented
the dependence of the Casimir densities, a4qb(r), on the rescaled radial coordinate r/a for a
massless spinor field on the Minkowski bulk. The vacuum energy density and pressures are
negative inside the sphere.

Now we turn to the consideration of various limiting cases of the expressions for the
sphere induced vacuum expectation values. In the limit r → 0, for the boundary parts (46)
the summands with a given l behave as r2l/α−2, and the leading contributions come from the
lowest l = 1 terms. Making use of standard formulae for the Bessel modified functions for
small values of the argument, for the sphere induced parts near the centre, r � a, one finds

εb ≈ π−2a−4

2α2	2
(

1
α

+ 1
2

) ( r

2a

) 2
α
−2

∫ ∞

µ

dxx
2
α

√
x2 − µ2

W [Iν(x),Kν(x)] − µ

W [Iν(x), Iν(x)]
(56)

pb ≈ αp⊥b ≈ π−2a−4

2α(2 + α)	2
(

1
α

+ 1
2

) ( r

2a

) 2
α
−2

∫ ∞

µ

x
2
α

+2 dx√
x2 − µ2

W [Iν(x),Kν(x)]

W [Iν(x), Iν(x)]
(57)
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where ν = 1/α + 1/2 and 	(x) is the gamma function. Hence, at the sphere centre the
boundary parts vanish for the global monopole spacetime (α < 1) and are finite for the
Minkowski spacetime (α = 1). Note that in the large mass limit, µ � 1, the integrals
in equations (56), (57) are exponentially suppressed by the factor e−2µ. In the Minkowski
background case the vacuum stresses for a massless spinor are isotropic at the sphere centre
and after the numerical evaluation of the integral one finds

pb(0)= p⊥b(0)= εb

3
= 2

3π2a4

∫ ∞

0

e−2x(x2 + x − ex sinh x) dx

(2x2 + 1) cosh(2x)− 2x sinh(2x) − 1
= −0.005 79

a4
.

(58)

The boundary induced parts of the vacuum energy–momentum tensor components diverge
at the sphere surface, r → a. These divergences are well known in quantum field theory with
boundaries and have been investigated for boundary geometries of various types [35–37]. In
order to find the leading terms of the corresponding asymptotic expansion in powers of the
distance from the sphere surface, we note that in the limit r → a the sum over l in (46)
diverges and, hence, for small 1 − r/a the main contribution comes from the large values of l.
Consequently, rescaling the integration variable x → νx and making use of the uniform
asymptotic expansions for the modified Bessel functions for large values of the order [38], to
the leading order one finds

εb(r) ≈ − µ + 1/5

12π2a(a − r)3
(59)

pb(r) ≈
(

1 − r

a

)
p⊥b(r) ≈ − 1/5 − 2µ

24π2a2(a − r)2
. (60)

Notice that the terms in these expansions diverging as the inverse fourth power of the distance
have cancelled out. This is a consequence of the conformal invariance of the massless
fermionic field and is in agreement with the general conclusions of reference [36]. Near the
sphere surface the energy density is negative for all values of µ, while the vacuum pressures
are negative for µ < 0.1 and are positive for µ > 0.1. It is of interest to note that the leading
terms do not depend on the parameter α and, hence, are the same for the Minkowski and global
monopole bulks. For the latter case, due to the divergences, near the sphere surface the total
vacuum energy–momentum tensor is dominated by the boundary induced parts qb(r). The
dependence of these parts on the rescaled radial coordinate r/a is depicted in figure 2 for the
case of a massless fermionic field on the global monopole background with the solid angle
deficit parameter α = 0.5.

Now let us consider the limit α � 1 for a fixed value r < a. This limit corresponds to
strong gravitational fields. In this case, from (41) one has ν ≈ l/α � 1 and, after introducing
in (46) a new integration variable y = x/ν, we can replace the modified Bessel functions
by their uniform asymptotic expansions for large values of the order. The integral over y

can be estimated by making use of the Laplace method. The main contribution to the sum
over l comes from the summands with l = 1 and the boundary parts of the vacuum energy–
momentum tensor components behave as exp[−2 ln(a/r)/α] with pb/p⊥b ∼ α. Hence, for
α � 1 the boundary induced vacuum expectation values are exponentially suppressed and the
corresponding vacuum stresses are strongly anisotropic. Figure 3 shows that the nonzero mass
can essentially change the behaviour of the vacuum energy–momentum tensor components.
In this figure we have depicted the dependence of the boundary induced quantities a4qb(r) on
the parameter Ma for the radial coordinate r = 0.5a. The left panel corresponds to the sphere
in the Minkowski spacetime (α = 1) and for the right panel α = 0.5.
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Figure 2. As figure 1, but for the boundary induced parts a4qb(r) on the background of the global
monopole spacetime with α = 0.5.
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Figure 3. Boundary induced vacuum expectation values a4qb(r), q = ε, p, p⊥, as functions of
µ = Ma for r/a = 0.5. The curves a, b, c correspond to the energy density (ε), azimuthal pressure
(p⊥) and radial pressure (p), respectively. For the left panel α = 1 (Minkowski spacetime) and
for the right panel α = 0.5.

4. Vacuum expectation values outside a spherical shell

Now let us consider the expectation values of the energy–momentum tensor in the region
outside a spherical shell, r > a. The corresponding eigenfunctions have the form (19), where
now the function Zν(kr) is a linear combination of the Bessel functions of the first and second
kinds. The coefficient in this linear combination is determined from the boundary condition
(25) and one obtains

Zν(kr) = gν(ka, kr) ≡ Jν(kr)Ỹν(ka) − Yν(kr)J̃ ν(ka) (61)

where Yν(z) is the Bessel function of the second kind, and the functions with tildes are defined
as (28). Now the spectrum for the quantum number k is continuous and the corresponding δkk′

in equation (23) is understood as the Dirac delta function δ(k − k′). To find the normalization
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coefficient A from equation (23) it is convenient to take β = β ′ for all discrete quantum
numbers. As the normalization integral diverges in the limit k = k′, the main contribution to
the integral over the radial coordinate comes from large values of r when the Bessel functions
can be replaced by their asymptotic forms for large arguments. The resulting integral is
elementary and for the normalization coefficient we obtain

A = Aσ A2
σ = k(ω + M)

2α2ω
[
J̃ 2

νσ
(ka) + Ỹ 2

νσ
(ka)

] . (62)

Substituting the eigenfunctions (19) into the mode-sum formula (32) and taking into account
equations (61) and (62), we can see that the vacuum energy–momentum tensor has the form
(33). The diagonal components are determined by the formulae

q(r) = −1

8πα2a3r

∞∑
j=1/2

(2j + 1)
∑

σ=0,1

∫ ∞

0
dx

f
(q)
σνσ

[x, gνσ
(x, xr/a)]

J̃ 2
νσ

(x) + Ỹ 2
νσ

(x)
q = ε, p, p⊥ (63)

where the expressions for f
(q)
σνσ

[
x, gνσ

(x, xr/a)
]

are obtained from formulae (36)–(38) by
making the replacements

Jν(y) → gν(x, y) Jν+nσ
(y) → Jν+nσ

(y)Ỹν(ka) − Yν+nσ
(y)J̃ ν(ka). (64)

To find the parts in the vacuum expectation values of the energy–momentum tensor induced by
the presence of the sphere, we subtract the corresponding components for the monopole bulk
without boundaries, given by equation (42). In order to evaluate the corresponding difference
we use the relation

f
(q)
σνσ

[
x, gνσ

(x, xr/a)
]

J̃ 2
νσ

(x) + Ỹ 2
νσ

(x)
− f (q)

σνσ

[
x, Jνσ

(xr/a)
] = −1

2

∑
s=1,2

J̃ νσ
(x)

H̃
(s)
νσ

(x)
f (q)

σνσ

[
x,H (s)

νσ
(xr/a)

]
(65)

where H(s)
ν (z), s = 1, 2 are the Hankel functions. This allows us to present the vacuum

energy–momentum tensor components in the form (40) with the boundary induced parts

qb(r) = 1

16πα2a3r

∞∑
j=1/2

(2j + 1)
∑

σ=0,1

∑
s=1,2

∫ ∞

0
dx

J̃ νσ
(x)

H̃
(s)
νσ

(x)
f (q)

σνσ

[
x,H (s)

νσ
(xr/a)

]
. (66)

In the complex plane x we can rotate the integration contour on the right of this formula by the
angle π/2 for s = 1 and by the angle −π/2 for s = 2. The integrals over the segments (0, iµ)

and (0,−iµ) cancel out and, after introducing the Bessel modified functions, one obtains

qb(r) = 1

π2α2a3r

∞∑
l=1

l

∫ ∞

µ

x3 dx√
x2 − µ2

W [Iν(x),Kν(x)]

W [Kν(x),Kν(x)]
F (q)

ν [x,Kν(xr/a)]. (67)

Here the expressions for the functions F
(q)
σν [x,Kν(y)] are obtained from formulae (47)–(49)

by making the replacements Iν(y) → Kν(y) and Iν−1(y) → −Kν−1(y). With the same
replacements, from (52), (53), (54) we can obtain formulae for the fermionic condensate
in the region outside a sphere. As for the interior region, it can be seen that in the limit
of strong gravitational fields, α � 1, the boundary induced vacuum expectation values are
exponentially suppressed by the factor exp[−(2/α) ln(r/a)], and the corresponding vacuum
stresses are strongly anisotropic: pb/p⊥b ∼ α.

In the case α = 1 the renormalized values for the boundary-free parts qm(r) vanish and
from (67) with ν = l + 1/2 the components of the vacuum energy–momentum tensor are
obtained for the region outside a spherical shell on the Minkowski bulk. Previous approaches
to this problem have been global and our calculation is a local extension of these results.
Note that for an infinitely thin spherical shell the total vacuum energy for a massless spinor,
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including interior and exterior parts, is positive, E = 0.0204/a [17, 20, 21]. In figure 1
we have plotted the dependence of the vacuum energy density and stresses on the radial
coordinate for a massless spinor field outside a sphere on the Minkowski bulk. The same
graphical representations for the boundary induced expectation values (67) on the background
of the global monopole spacetime with α = 0.5 are depicted in figure 2. As seen from these
figures, the energy density and azimuthal pressure are positive outside a sphere, and the radial
pressure is negative. The latter has the same sign as for the interior region.

For the case of a massless spinor the asymptotic behaviour of the boundary part (67)
at large distances from the sphere can be obtained by introducing a new integration variable
y = xr/a and expanding the subintegrands in terms of a/r . The leading contribution for the
summands with a given l has the order (a/r)2ν+4 and the main contribution comes from the
l = 1 term. Evaluating the standard integrals involving the square of the MacDonald function,
the leading terms for the asymptotic expansions over a/r can be presented in the form

qb(r) ≈ 1

2
2
α πa4

	
(

1
α

+ 1
)
	

(
2
α

+ 3
2

)
fq

(4 − α2)(2 + α)	3
(

1
α

+ 1
2

) (a

r

) 2
α

+5
(68)

where

fε = 4
α + 1

3α + 2
fp = − 2α

3α + 2
fp⊥ = 1. (69)

As for the interior components, the quantities (67) diverge at the sphere surface r = a.
Near the surface the dominant contributions come from modes with large l and, by making
use of the uniform asymptotic expansions for the Bessel modified functions, the asymptotic
expansions can be derived in powers of the distance from the sphere. The leading terms of
these asymptotic expansions are determined by the formulae

εb(r) ∼ 1/5 − 5µ

12π2a(r − a)3
(70)

pb(r) ∼ −
( r

a
− 1

)
p⊥b(r) ∼ − 1/5 − 2µ

24π2a2(r − a)2
. (71)

Near the sphere the external energy density is positive for µ < 0.04 and is negative for
µ > 0.04. Recall that near the sphere the interior energy density is always negative. As we
see, the leading terms for the radial pressure are the same for the regions outside and inside
the sphere. For the azimuthal pressure these terms have opposite signs. In the case of the
massless spinor field the same is true for the energy density.

5. Concluding remarks

In this paper we have analysed the fermionic Casimir densities induced by a spherical shell
in an idealized point-like global monopole spacetime. Specifically, the renormalized vacuum
expectation value of the energy–momentum tensor operator has been considered, where the
matter fields obey the MIT bag boundary condition on the shell. Because the boundary
condition provides a discrete energy spectrum for the matter fields, the summation over the
modes can be developed by using the generalized Abel–Plana summation formula. Moreover,
this procedure allows us to extract from the vacuum average the boundary dependent part.
This part presents, besides the contribution coming from the parameter α which characterizes
the presence of the global monopole, contributions coming from the boundary itself. Two
distinct situations have been considered: the calculation of the vacuum average in the regions
inside and outside of the spherical shell. As regards the interior region case, we pointed out
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that all contributions to the vacuum average go to zero as the radius of the spherical shell goes
to infinity, as was expected.

The boundary induced expectation values for the components of the energy–momentum
tensor are given by formulae (46) and (67) for interior and exterior regions, respectively.
The corresponding formulae for the fermionic condensate densities are obtained from these
expressions with the replacement (54) for the interior region and with additional replacement
Iν(y) → Kν(y), Iν−1(y) → −Kν−1(y) for the exterior region. These expressions diverge in
a non-integrable manner as the boundary is approached. The energy density and azimuthal
pressure vary to leading order, as the inverse cube of the distance from the sphere, and near
the sphere the azimuthal pressure has opposite signs for the interior and exterior regions.
For a massless spinor the same is true for the energy density. The radial pressure varies
as the inverse square of the distance and near the sphere has the same sign for exterior
and interior regions. This behaviour is clearly seen from figures 1 and 2 where the radial
dependences of the vacuum energy density and azimuthal and radial pressures are presented
for the Minkowski background and global monopole spacetime with α = 0.5. The leading
terms of the corresponding asymptotic expansions near the sphere do not depend on the solid
angle deficit parameter and are the same for these two cases. Near the sphere the interior
energy density is negative for all values of the mass, while the exterior energy density is
positive for Ma < 0.04 and is negative for Ma > 0.04. In order to illustrate the dependence
on the mass, in figure 3 we have plotted the boundary induced vacuum densities at r = 0.5a

as functions of Ma. Near the sphere centre the dominant contributions come from modes
with l = 1, and the sphere induced vacuum expectation values vanish for the global monopole
spacetime and are finite for the Minkowski bulk. The asymptotic behaviour of the vacuum
energy–momentum tensor at large distances from the sphere is described by formula (68)
and the corresponding diagonal components go to zero as (a/r)2/α+5. In the limit of strong
gravitational field, corresponding to small values of the parameter α, describing the solid
angle deficit, the boundary induced part of the vacuum energy–momentum tensor is strongly
suppressed by the factor exp[−(2/α)| ln(r/a)|] and the corresponding vacuum stresses are
strongly anisotropic: pb ∼ αp⊥b. Note that this suppression effect also takes place in the
scalar case [9, 10].
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Appendix. The formula for summation over the zeros of a combination of the
Bessel functions

We have seen that the vacuum expectation values for the energy–momentum tensor for a spinor
field inside a spherical shell on the background of the global monopole spacetime contain sums
over the zeros of the function

J̃ ν(z) ≡ zJ ′
ν(z) +

(
µ + sω

√
z2 + µ2 − (−1)σ ν

)
Jν(z) σ = 0, 1 sω = ±1. (A.1)
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To obtain a formula for summation over these zeros, we use here the generalized Abel–Plana
formula [11, 12]. In this formula, as the function g(z) let us choose

g(z) = i
Ỹν(z)

J̃ ν(z)
f (z) (A.2)

with a function f (z) analytic in the right half-plane Re z � 0, and Yν(z) the Neumann function.
For the sum and difference of the functions f (z) and g(z) one obtains

f (z) − (−1)kg(z) = H̃ (k)
ν (z)

J̃ ν(z)
f (z) k = 1, 2 (A.3)

with H(1)
ν and H(2)

ν being Bessel functions of the third kind or Hankel functions. By using the
asymptotic formulae for the Bessel functions for large values of the argument, the conditions
for the generalized Abel–Plana formula can be written in terms of the function f (z) as follows:

|f (z)| < ε(x) ec|y| z = x + iy |z| → ∞ (A.4)

where c < 2 and ε(x) → 0 for x → ∞.
Let λν,s �= 0, s = 1, 2, 3 . . . , be zeros for the function J̃ ν(z) in the right half-plane,

arranged in ascending order, λν,s � λν,s+1. By using the Wronskian W [Jν(z), Yν(z)] = 2/πz,
one can easily see that Ỹ (λν,s) = 2/(πJ̃ (λν,s)). This allows one to present the residue term
coming from the poles of the function g(z) in the form

π i Resz=λν,s
g(z) = Tν(λν,s)f (λν,s) (A.5)

where we have introduced the notation

Tν(z) = z

J 2
ν (z)

[
z2 + (µ − (−1)σ ν)

(
µ2 + sω

√
z2 + µ2

) − sωz2

2
√

z2+µ2

] . (A.6)

Substituting (A.2) and (A.3) into the generalized Abel–Plana formula [11, 12] and taking in
this formula the limit a → 0 (the branch points z = ±iµ are avoided by semicircles of small
radius), we obtain that for the function f (z) analytic in the half-plane Re z > 0 and satisfying
condition (A.4) the following formula applies:

lim
b→+∞

{
n∑

s=1

Tν(λν,s)f (λν,s) −
∫ b

0
f (x) dx

}
= π

2
Resz=0f (z)

Ȳν(z)

J̄ν(z)

− 1

π

∫ ∞

0

[
e−νπ if (xeπ i/2)

K(+)
ν (x)

I
(+)
ν (x)

+ eνπ if (xe−π i/2)
K(−)

ν (x)

I
(−)
ν (x)

]
dx (A.7)

where on the left λν,n < b < λν,n+1, and Tν(λν,k) is determined by relation (A.6). In formula
(A.7) we use the notation

F (±)(z) =
{

zF ′(z) +
(
µ + sω

√
µ2 − z2 − (−1)σ ν

)
F(z) |z| < µ

zF ′(z) +
(
µ ± sωi

√
z2 − µ2 − (−1)σ ν

)
F(z) |z| > µ

(A.8)

for a given function F(z), and have taken into account that for z = iy,

(z2 + µ2)1/2 =



(µ2 − y2)1/2 |y| < µ

(y2 − µ2)1/2 eiπ/2 y > µ

(y2 − µ2)1/2 e−iπ/2 y < −µ

(A.9)

In this paper, we apply formula (A.7) to the sums over s in expressions (35) for the vacuum
expectation values of the energy density and vacuum stresses. As can be seen from expressions
(36)–(38), the corresponding functions f (z) satisfy the relation

e−νπ if (xeπ i/2) = −eνπ if (xe−π i/2) for 0 � x < µ. (A.10)

By taking into account that for these x one has F (+) = F (−), we conclude that the part of the
integral on the right of equation (A.7) over the interval (0, µ) vanishes.
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